A Label-Free QCM Biosensor Based on Target-Triggered Release of Cargo Molecules in Gold Nanocages Capped with Aptamers for Thrombin Detection

Xinge Xi, Isabelle I. Niyonshuti, Ningxiang Yu, Lan Yao, Ying Fu, Jingyi Chen, and Yanbin Li

> Presenter: Xinge Xi Department of Biological and Agricultural Engineering University of Arkansas xingexi@uark.edu

Content

- Introduction
- Materials and methods
 - Preparation of the aptamer capped, PAMAM loaded AuNCs
 - Immobilization of the PAMAM loaded AuNCs on electrode
 - Detection of the thrombin
- Results and discussion
 - Loading/releasing confirmation of cargo molecules
 - Selection of the cargo molecules.
 - Thrombin detection
 - Evaluation of specificity
- Conclusions

Introduction

- Thrombin is an enzyme for blood coagulation and a biomarker of chronic inflammatory diseases, vascular diseases, coagulation abnormalities, cancers, atherosclerosis, etc.¹⁻³
- Excessive thrombin will cause venous thrombosis, and low amount of thrombin will increase bleeding risks.⁴
- The concentration of thrombin during coagulation varies from pM to μ M, and thus the limit of detection and detection range need to cover the pM- μ M range.^{5, 6}
- It is critical that thrombin detection methods with sufficiently low detection limit and wide dynamic range are developed.

Fig. 1. Thrombin with the active site colored.

*Reprinted with permission from PDB-101 (PDB101.rcsb.org). ⁷

- 1. Mol. Asp. Med 2008, 29 (4), 203-254.
- 2. Biosens. Bioelectron. 2013, 40 (1), 24-31.
- 3. J. Cell. Biochem. 2019, 120 (4), 4757-4765.
- 4. J. Am. Heart Assoc. 2016, 5 (8), e003553.
- 5. Sens. Actuators B 2018, 267, 412-418.
- 6. Anal. Chim. Acta **2014,** 837, 1-15.
- 7. PLoS Biol, 13(5), e1002140.

Introduction

• Thrombin detection methods include enzyme-linked sandwich assays, stips, optical sensors, electrochemical platforms, and piezoelectric methods.

Sensing platform	Linear range	Detection limit	Detection time*	Reference	
	0.5-34 pM	2 pM	1.5 h	ELISA Kit (ab270210)	
Enzyme linked assay	0-300 fM	25 fM	6 h	Park et al., 2014	
	0.3-100 nM	0.15 nM	2 h	Wang et al., 2017	
Lateral flow assay	-	1.5 nM	10 min	Liu et al., 2019	
Resonance light	10-500 pM, 1-60 nM	0.71 pM	1 h	Liu et al., 2018	
scattering	0.5-75 nM	8.6 nM	1 h	Chen et al., 2017	
Fluorescence	50 pM-5 nM	1.0 pM	2 h	Li et al., 2019	
Chemiluminesce	1-25 pM	0.55 pM	2.5 h	Wang et al., 2018	
Electrochomictry	1 pM-10 pM, 10 pM- 1 μM	10 pM	1.5 h	Chen et al., 2019	
Electrochemistry	1 pM-10 nM	0.2 pM	1.5 h	Yang et al., 2020	
	1.0-100 nM	1 nM	2 h	Bayramoglu et al., 2019	
QCM	0.5–12.5 nM	0.1 nM	1 h	Chen et al., 2010	
	8.6 pM-86 nM	0.8 pM	1.5 h	this study	

Tab. 1. Comparison of thrombin detection to other sensing platforms.

*Some of the detection times were estimated based on the experimental description in the corresponding references.

Introduction

• Thrombin detection methods include enzyme-linked sandwich assays, stips, optical sensors, electrochemical platforms, and piezoelectric methods.

item	value	unit
initial frequency	7.99	MHz
volume added	200	μL
thrombin concentration	8.6	pМ
thombin amount	1.72x10 ⁻¹⁵	mol
molecular weight of thrombin	65045	g/mol
total mass of the AuNCs	1.12x10 ⁻¹⁵	g
electrode diameter	0.511	cm
surface area	0.205	cm ²
frequency change	0.1	Hz

Tab. s1. An example of theoretical signal caused by thrombin.

$$\Delta f = -2.3 \times 10^6 f_0^2 \Delta M/A$$

 Δf is the change in frequency; f_0 is the initial resonance frequency of the crystal; ΔM is the change in the mass; and A is the surface area tested in cm².

Objectives

- To use various molecules loaded gold nanocages (AuNCs) capped with aptamers as biosensing material for signal amplification and improved sensitivity;
- To simplify the detection process and shorten the detection time of thrombin by the target triggered controlled-release mechanism of the loaded AuNCs;
- To achieve simple, rapid, and sensitive detection of thrombin.

Materials and methods

- Thrombin aptamer (TTT TTG GTT GGT GTG GTT GGC CCC)
- DNA probe 1 (SH-GGG GG)
- DNA probe 2 (AAA AAA-SH)

ANN MAN

aptamers

\$ }

 \mathcal{O}

empty AuNC: pores closed

Materials and methods

empty AuNC

loaded and capped AuNC

Fig. 2. The process of loading cargo molecules into AuNCs.

Materials and methods

Fig. 3. The thrombin-triggered release of cargo molecules.

Fig. 4. Illustration of the QCM biosensor based on target-triggered release of cargo molecules inside AuNCs capped by aptamers for sensitive detection of thrombin.

Fig. 5. (A) TEM image of AuNCs; (B) Zoom-in TEM image of the 45 nm AuNCs with 5 nm pores.

Tab.	2.	The	step-	by-step	size	monitoring	of the	AuNCs	immob	ilization	process.
------	----	-----	-------	---------	------	------------	--------	-------	-------	-----------	----------

Immobilization steps	TEM size (nm)	Hydrodynamic diameter (nm)
AuNCs	45.8 ± 3.5	87.6 ± 0.6
AuNCs-ssDNA	$51.1\ \pm 8.7$	117.5 ± 1.7
AuNCs-ssDNA-aptamers	$56.2 \hspace{0.1cm} \pm \hspace{0.1cm} 5.5 \hspace{0.1cm}$	122.7 ± 2.0

Fig. 6. Stepwise monitoring of empty AuNCs, ssDNA probes immobilized AuNCs, HRP loaded and aptamer capped AuNCs, and a typical thrombin detection.

Tab. 3. Negative control: comparison between emptyand loaded AuNCs as biosensing elements

Todded / tartes
68

Fig. 7. A typical sensorgram of the QCM aptasensor, showing frequency changes of AuNC immobilization (ΔF^*) and target detection (ΔF).

Fig 8. (A) Thrombin (86 nM) tested using different cargo molecules with the molecular weight ranging from 480 Da to 44,000 Da; (B) Comparison between PAMAM 0.5 G and PAMAM 1.5 G as cargo molecules in thrombin detection, with the concentration of thrombin ranging from 0.0086 nM to 86 nM.

Fig. 9. Frequency change and lg thrombin concentrations from 0.0086 nM to 86 nM using PAMAM 1.5 G as cargo molecules.

Fig. 10. Specificity test of the biosensor using BSA (1 μ M) and lysozyme (1 μ M), and comparison to thrombin (8.6 pM).

Conclusions

- By applying an innovative target-triggered release mechanism on a QCM platform, PAMAM loaded AuNCs capped with aptamers were developed as biosensing element for sensitive and specific response to target thrombin.
- The cargo molecules for AuNCs were selected based on their size, weight, and stability.
- The QCM biosensor had a good linear range from 0.0086 nM to 86 nM with a LOD of 0.8 pM, and the label-free platform requires simple operations and a detection time within 1.5 h.
- The biosensor had a good specificity under various interfering proteins.
- This platform has the potential to be utilized for other proteins with their related aptamers.

Acknowledgement

• This research was supported by Arkansas Biosciences Institute (ABI).

Thank you!

Xinge Xi, Ph.D. Candidate Graduate Research Assistant Doctoral Academy Fellow University of Arkansas, Fayetteville xingexi@uark.edu

Lightning presentation and Q&A session ITSC - Biosensor for Food, Agriculture and Environment 2:30pm – 3:30pm, Tuesday, July 13.

This research has been submitted under review in May, 2021.